Quadric-Based Polygonal Surface Simplification

نویسندگان

  • Michael Garland
  • Andrew Witkin
  • Martial Hebert
چکیده

Many applications in computer graphics and related fields can benefit from automatic simplification of complex polygonal surface models. Applications are often confronted with either very densely over-sampled surfaces or models too complex for the limited available hardware capacity. An effective algorithm for rapidly producing high-quality approximations of the original model is a valuable tool for managing data complexity. In this dissertation, I present my simplification algorithm, based on iterative vertex pair contraction. This technique provides an effective compromise between the fastest algorithms, which often produce poor quality results, and the highest-quality algorithms, which are generally very slow. For example, a 1000 face approximation of a 100,000 face model can be produced in about 10 seconds on a PentiumPro 200. The algorithm can simplify both the geometry and topology of manifold as well as non-manifold surfaces. In addition to producing single approximations, my algorithm can also be used to generate multiresolution representations such as progressive meshes and vertex hierarchies for view-dependent refinement. The foundation of my simplification algorithm, is the quadric error metric which I have developed. It provides a useful and economical characterization of local surface shape, and I have proven a direct mathematical connection between the quadric metric and surface curvature. A generalized form of this metric can accommodate surfaces with material properties, such as RGB color or texture coordinates. I have also developed a closely related technique for constructing a hierarchy of well-defined surface regions composed of disjoint sets of faces. This algorithm involves applying a dual form of my simplification algorithm to the dual graph of the input surface. The resulting structure is a hierarchy of face clusters which is an effective multiresolution representation for applications such as radiosity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal triangulation and quadric-based surface simplification

Many algorithms for reducing the number of triangles in a surface model have been proposed, but to date there has been little theoretical analysis of the approximations they produce. Previously we described an algorithm that simplifies polygonal models using a quadric error metric. This method is fast and produces high quality approximations in practice. Here we provide some theory to explain w...

متن کامل

Discrete Differential Error Metric for Surface Simplification

In this paper we propose a new discrete differential error metric for surface simplification. Many surface simplification algorithms have been developed in order to produce rapidly high quality approximations of polygonal models, and the quadric error metric based on the distance error is the most popular and successful error metric so far. Even though such distance based error metrics give vis...

متن کامل

Polygonal Mesh Simplification with Face Color and Boundary Edge Preservation Using Quadric Error Metric

In the applications such as scientific and medical visualization, highly detailed polygonal meshes are needed. Rendering these polygonal meshes usually exceeds the capabilities of graphics hardware. To improve rendering efficiency and maintain proper interactivity, the polygonal mesh simplification technique is commonly used to reduce the number of polygons of the mesh and to construct the mult...

متن کامل

Pii: S0925-7721(99)00030-9

Many algorithms for reducing the number of triangles in a surface model have been proposed, but to date there has been little theoretical analysis of the approximations they produce. Previously we described an algorithm that simplifies polygonal models using a quadric error metric. This method is fast and produces high quality approximations in practice. Here we provide some theory to explain w...

متن کامل

Variational mesh segmentation via quadric surface fitting

Wepresent a new variationalmethod formesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999